Integrals of Composite Functions Through Tabular Integration By Parts

Main Article Content

Emil C. Alcantara

Keywords

Elementary Functions, Composite Functions, Integrals, Tabular Integration by Parts (TIBP)

Abstract

The paper aims to expose the applications of Tabular Integration by Parts (TIBP) in evaluating the integrals of composite functions.

Abstract 256 | PDF Downloads 192

References

Dence, T. P. (2003). Column integration and series representions. The College Mathematics Journal, 34 (2).

Finney, R. L., Weir, M. D., & Cardiano, F. (2003). Thomas Calculus : Early Transcendentals.10th Ed. USA: Addison Wesley.

Gillman, L. (1991) More on tabular integration by parts. The College Mathematics Journal, 22 (5), 407 - 410.

Horowitz, D. (1990). Tabular integration by parts. The College Mathematics Journal, 21, 307 - 311.

Kasube, H. E. (1983). A technique for integration by parts. The American Mathematical Monthly, 90, 210 - 211.

Kowalski. (2010). Tabular integration by parts. Retrieved from : http://www.mcs.sdsmt.edu/tkowalsk/notes/Tabular-IBP.pdf.

Leithold, L. (1990). The calculus with analytic geometry. 6th ed. USA: Harper and Row Publisher, Inc.

Leithold, L. (2002). The calculus 7. Singapore : Pearson Education Asia Pte. Ltd.

Nicol, S. J. (1993). Integrals of products of sine and cosine with different arguments. The College Mathematics Journal, 24 (2), 158-160.

Stewart, J. (2003). Calculus : early transcendentals. 5th ed. Thomson Learning Asia.

Switkes, J. S. (2005). A quotient rule integration by parts formula. The College Mathematics Journal, 36 (1).