Adsorption Behavior of Heavy Metal Ions (Cr3+, Pb2+ and Cu2+) Into Magnetite-Graphite Oxide-Diatomite

Authors

  • Juliet Q. Dalagan Xavier university
  • Romelisa A. Ibale Xavier university

Keywords:

Adsorption, magnetite, isotherm models, graphite oxide, diatomite

Abstract

 In this recent work, magnetite-graphite oxide diatomite (Mag-GO-diatomite) composite was synthesized using a facile method. GO diatomite, with and without Magnetite, was used for the adsorption of Cu2+, Pb2+ andCr3+. Langmuir and Freund lich adsorption sot herm models were tested to validate which of these two fits the empirical data. Results showed that the adsorption of Cr3+and Cu2+ were best described by Langmuir isotherm and Pb2+ was well fitted with the Freund lich isotherm. From the isotherm data, adsorption of Cr3+ into GO-diatomite showed the highest adsorption capacity while Pb2+revealed to have the largest adsorption for Mag-GO-diatomite.

References

Al-Degs, Y., Khraisheh, M., & Tutunji, M. (2001). Sorption of Lead Ions on Diatomite and Manganese Oxides Modified Diatomite. Water Research, 35(15), 3724–3728.

Bao, J., Fu, Y., & Bao, Z., Thiol-functionalized magnetite/graphene oxide hybrid as a reusable adsorbent for Hg2+ removal. Nanoscale Research Letters, 8(486).

Dalagan, J. & Ibale, R. (2016). Magnetite- Graphite Oxide Diatomite: An Alternative Adsorbent for Heavy Metal Ions. Philippine Journal of Science, 145(1), 77-86.

Dalagan, J., Enriquez, E., & Li, LJ. (2013). Simultaneous functionalization and reduction of graphene oxide with diatom silica. Journal of Material Science, 48, 3415–3421.

Demirbas, A. Pehlivan, E., Gode, F., Altun,T., & Arslan, G. (2005). Adsorption of Cu(II), Zn(II), Ni(II), Pb(II), and Cd(II) from Aqueous Solution on Amberlite IR-120 Synthetic Resin. Journal Colloid Interface Science. 282, 20–25.

Dronnet, V. M., Axelos, M. A. V., Renard, C. M. G. C & Thibault J. F. (1998). Improvement of the binding capacity of metal cations by sugar-beet pulp. 2. Binding of divalent metal cations by modified sugar-beet pulp. Carbohydrate Polymers. 35, 239-241.

Fan L., Luo C., Sun M., Li X., Lu F., Qiu H. (2012), Preparation of novel magnetic chitosan/graphene oxide composite as effective adsorbents toward methylene blue. Bioresource Technology. 114, 703–706.

Feng, X., Fryxell, G. E., Wang, L. Q., Kim, A. Y., Liu, J., & Kemner, K. M. (1997). Functionalized Monolayers on Ordered Mesoporous Supports. Science. 276, 923–926.

Giraldo, L., & Erto, A. (2013). Moreno-Piraján, J.C. Magnetite Nanoparticles for Removal of Heavy Metals from Aqueous Solutions: Synthesis and Characterization. Adsorption. 19, 465-474.

Hamza N., Hammad A., & Eltayeb M. (2013). Adsorption of Metals (Fe(II), Cr(III) and Co(II)) from aqueous solution by using Activated carbon prepared from Mesquite tree. Science Journal of Analytical Chemistry. 1(2), 12-20.

Ito, A., Umita, T., Aizawa, J., Takachi, T., & Morinaga, K. (2000). Removal of Heavy Metals from Anaerobically Digested Sewage Sludge by a New Chemical Method using Ferric Sulfate. Water Research. 34, 751–758.

Kang, S. Y., Lee J., Moon S. H., &Kim K. W. (2004). Competitive adsorption characteristics of Co2+, Ni2+, and Cr3+ by IRN-77 cation exchange resin in synthesized wastewater. Chemosphere. 56, 141–147.

Khraisheh, M. A. M., Al-degs, Y. S., & Mcminn, W. A. M. (2004). Remediation of Wastewater Containing Heavy Metals using Raw and Modiï¬ed Diatomite. Chemical Engineer Journal. 99, 177–184.

Li, Y. H., Di, Z. C., Ding, J., Wu, D. H., Luan, Z. K., & Zhu, Y. Q. (2005). Adsorption Thermodynamic, Kinetic and Desorption Studies of Pb2+ on Carbon Nanotubes. Water Research 39, 605–609.

Li, M. K., Gao, C. X., Zhang, X., Zheng, W. T., Zhao, Z. D., & Meng F. L. Electrical conductivity of calcined graphene oxide/diatomite composites with a segregated structure. Materials Letters, 141, 125–127126.

Liu M, Chen C, Hu J, Wu X, and Wang X. (2011). Synthesis of Magnetite/ Graphene Oxide Composite and Application for Cobalt(II) Removal, Journal of Physical Chemistry C. 115, 25234–25240.

Meral, K. & Metin, O. (2014). Graphene oxide–magnetite nanocomposite as an efficient and magnetically separable adsorbent for methylene blue removal from aqueous solution, Turkish Journal of Chemistry 38: 775 – 782.

Mier, M. V., Callejas, R. L., Gehr, R., Cisneros, B. E. J., & Alvarez, P. J. J. (2001). Heavy metal removal with mexicanclinoptilolite: multi- component ionic exchange. Water Research. 35, 373–378.

Mouflih, M., Aklil, A. S., & Sebtib, J. (2005). Removal of lead from aqueous solutions by activated phosphate. Hazard Mater. B119, 183–188.

Sari, A., Tuzen, M., Citak, D., & Soylak, M. (2007). Equilibrium, Kinetic and Thermodynamic Studies of Adsorption of Pb(II) from Aqueous Solution onto Turkish Kaolinite Clay. J. Hazard. Mater. 149, 283–291.

Sekar, M., Sakthi, V., & Rengaraj, S. (2004). Kinetics and Equilibrium Adsorption Study of Lead(II) on Activated Carbon Prepared from Coconut Shell. Journal Colloid Interface Science. 279, 307–313.

Shawabkeha, R. A., & Tutunji, M. F. (2003). Experimental Study and Modeling of Basic Dye Sorption by Diatomaceous Clay. Applied Clay Science. 24, 111–120.

Sheng, G., Wang, S., Hu, J., Lu, Y., Li, J., Dong, Y., & Wang, X. (2009). Adsorption of Pb(II) on Diatomite as Affected via Aqueous Solution Chemistry and Temperature. Colloids and Surfaces A: physicochemical and Engineering Aspect. 339, 159-166.

Tchobanoglous, G., Burton, F. L., & Stensel, H. D. (2003). Wastewater Engineering: Treatment and Reuse. New York: McGraw-Hill Inc.

Wang, F. Y., Wang, H., & Ma, J. W. (2010). Adsorption of Cadmium (II) Ions from Aqueous Solution by a New Low-Cost adsorbent - Bamboo Charcoal. Journal of Hazardous Mat. 177, 1-3.

Wang, S. B., Terdkiatburana, T., & Tade, M. O. (2008). Adsorption of Cu(II), Pb(II) and Humic Acid on Natural Zeolite Tuff in Single and Binary Systems. Separation Purification Technology. 62, 64–70.

Wang Y., He Q., Qu H., Zhang X., Guo J., Zhu J., Zhao G., Colorado, H. A., Yu, J., Sun L., Bhana, S., Khan M. A., Huang X., Young D. P., Wang H., Wang X., Wei, S., & Guo Z. (2014). Magnetic graphene oxide nanocomposites: nanoparticles growth mechanism and property analysis. Journal Mater. Chem. C, 2, 9478-9488.

Yuan, P., Liu, D., Fan, M., Yang, D., Zhu, R., Ge, F., Zhu, J., & He, H. (2010). Removal of Hexavalent Chromium [Cr(VI)] from Aqueous Solutions by the Diatomite-Supported/Unsupported Magnetite Nanoparticles. Journal of Hazardous Materials. 173, 614-621.

Zhang, S. Q., & Hou, W. G. (2008). Adsorption Behavior of Pb(II) on Montmorillonite, Colloids Surf. A: Physicochem. Engineering Aspects. 320, 92–97.

Zhao, X., Hu, B., Ye, J., & Jia, Q. (2013). Preparation, Characterization, and Application of Graphene Zinc Oxide Composites (G-ZnO) for the Adsorption of Cu(II), Pb(II), and Cr(III). Journal Chemical Engineering Data. 58, 2395-2401.

Downloads

Published

2016-08-26

How to Cite

Dalagan, J. Q., & Ibale, R. A. (2016). Adsorption Behavior of Heavy Metal Ions (Cr3+, Pb2+ and Cu2+) Into Magnetite-Graphite Oxide-Diatomite. Asia Pacific Higher Education Research Journal (APHERJ), 3(1). Retrieved from https://po.pnuresearchportal.org/ejournal/index.php/apherj/article/view/211