

Integrated development environment for program logic formulation

May M. Garcia1*, Ma. Carmela F. Francisco1

1Department of Mathematics, Technological University of the Philippines, Manila, Philippines

ARTICLE INFORMATION

Article History:
Received 12 January 2015
Received in revised form 17 April 2015

*Corresponding author: lorzenmay@yahoo.com

ABSTRACT

Programmers translate the way people do to
solve problems into programs. By doing so,
good logic formulation is a must. The study
aimed to develop an Integrated Development
Environment (IDE) for Program Logic
Formulation to enhance students’ skills in
programming through flowcharting.

The IDE was designed to include tools for
creating and editing flowchart, checking
program logic and expressions, debugging, and
maintaining the database of programming
problems. The IDE’s interface was partitioned
into several sized windows in which all tools
are contained and labelled. The design used
icons for flowchart symbols where any one of
these can be clicked and dragged into the
provided workspace, file functions such as new,
save, save as, cut, copy, paste, delete, and print,
and translator functions such as compile and
debug. The translators in the developed system
are the compile and debug modules. The
compile module checks the expressions and
operations on the flowchart symbols. If there is

error found in the symbols, it produces one
from any of the three messages: The flowchart
is syntactically correct, the program produces
the correct logic, and it produces wrong output.
The debug module examines each symbol from
start until end symbol in the flowchart. There
are two programs running simultaneously: C#
(.cs) file and the IDE itself. Behind the scene,
the IDE creates a .cs file consisting of
equivalent C# statements for each flowchart
symbol and other C# statements to make the
program complete for execution. Each C#
output for process and output symbols is
displayed and read on the console command
and passes it back to the IDE’s Debug window.
This IDE was tested for its functionality and
reliability to determine correct flowchart and
logic.

Testing results showed that the IDE provides a
working environment where students can
create, save, open, edit, and print flowcharts as
well as check program expression and logic.
Based on the results of the evaluation
conducted, the developed system gained an
overall mean of 4.62 with a descriptive rating
of Excellent, which indicates that the software
material can be a useful tool in training and
enhancing the students’ skills in logic
formulation.

Keywords
IDE, Program Logic Formulation, PLF,
Flowcharting, Logic Formulation, Pseudocode

Introduction

Today’s technology brings much

advantage to humankind from industrial to
personal activities. Industries use software
tools as aids in gathering, analyzing, and
interpreting data. Similarly, office personnel
use productivity tools such as word processor,
spreadsheet, and presentation software to

help them in doing their job with ease and
satisfaction. In the academe, teachers practice
the use of instructional tools or courseware
package to improve their delivery of
instruction.

Some of the available coursewares

are inclusive in terms of usage. The software,
Packet Tracer of CISCO Company, helps
students to design and check the computer

connection in a Local Area Network (LAN)
environment. It is used by most teachers
handling Network subject. Also, the Pseudo-
Compiler of Informatics, checks the syntax of
the program written in the English language
and later shows its output if correct. This
software requires the students to be
knowledgeable of the syntax customs in using
Pseudo-Compiler. In this case, the students
should be aware of the language structure of
Pseudo-Compiler. However, this is not a
commercially acceptable computer language
in programming. Learning the Pseudo-
Compiler of Informatics prolongs the time to
develop students’ skills in programming
because they should be knowledgeable of
flowcharting which is an important tool for
them to understand programming.

Background of the Study

Writing a computer program is not as
simple as one thinks for it must conform to
the required logic–correct thinking and
reasoning. For a person to know how to write
a program, logic formulation is a prerequisite
skill.

Different tools can be used to show

the program logic such as pseudocode,
nassineiderman, and flowchart. Flowchart is
used to show the step-by-step process to
solve a problem before it is translated into a
program using any programming language.
Some students find it difficult to learn
programming in a period of one semester. One
of the reasons is that they are not well guided
in analyzing a problem and formulating its
solution. Also, teachers give them limited
exposure to computer programming exercises
and they have not mastered the basic
concepts on logic formulation. Some students
cannot formulate the logic the way they think
how to solve a problem possibly because they
are not used to solving it alone. They are
neither accustomed to do the desk checking
method, where they themselves can check
their own solutions. If students could be
trained to simulate logic through flowchart,
then learning programming would be an easy
task.

Objectives of the Study

General Objective:

The general objective of the study is
to develop a stand-alone IDE in program logic
formulation intended for TUP students in the
subject Computer Programming I.

Specific Objectives:

Mainly, this study has the following
objectives:

1. Design a stand-alone system that draws

flowchart with the following features:
 A workspace that allows students to

create and edit solutions in flowchart
form.

 A compile module that checks
program logic and expressions.

 A debug window that shows the
values of program variables during
program running, and

 An updatable databank of problems
for students to solve;

2. Create the system using C Sharp (#),
Extensible Markup Language (XML), and
Cascaded Style Sheets (CSS);

3. Test and improve the system in terms of
functionality, and reliability; and

4. Evaluate the performance of the

developed system using ISO 9126 criteria
for quality software.

Conceptual Model of the Study

The Conceptual Model of the Study, as
shown in Figure 1, explains the essential
components in the development of the
system. The components include: input,
process, and output. The study requires basic
understanding of a typical structure of an IDE,
Program Logic Formulation, Flowchart,
Database, Compiler Theory, Finite Automata,
C#, CSS, and XML. The Software requirements
include a 32 or 64-bit Windows Operating
System, and Visual Studio. The process
specifies the steps in developing the system.
System design pertains to the general feature

and function of the system using the Finite
Automata, Entity Relationship Diagram, and
System Flowchart. The system development
incorporates the result of system analysis to
code the requirements of the study which
includes program coding. Finally, the study
was subjected to system testing and
debugging to find errors and to attain
perfection based on the set design
characteristics. The output of the system is
“An IDE in Program Logic Formulation” which
was evaluated by purposively sampled
respondents to assess its performance.

INPUT PROCESS OUTPUT

Figure 1. The Conceptual Model of the Study

Literature Review

Integrated Development Environment

O’Dell (2010) defined integrated
development environment (IDE) as a software
application that gives complete facilities to
computer programmers for program
development. The IDE performs as text editor,
debugger, and compiler all in one sometimes
stuffed, but generally a useful package. Some
IDEs contain compiler, interpreter or both
such as Microsoft Visual Studio and Eclipse;
others do not such as Sharp Develop and

Lazarus. The objective of the IDE is to lessen
the configuration required to piece together
various development utilities, instead of
providing the same set of capabilities as a
unified unit. Reducing the setup time can
increase developer productivity. For instance,
code can be constantly parsed, while it is
being edited, providing instant feedback when
syntax errors are detected. That can speed the
program development and analysis of the
logic.

The project study developed by

Mendoza (2006), an IDE for Turbo Assembler,
provides an environment where primary
development tools such as an editor,
assembler, linker, and debugger are loosely
tied in the package not requiring the users to
run each application in the command line.
This software assisted novice assembly
language users in running assembly programs
and locating errors. Its text editor is line
numbered to easily identify the corresponding
error messages produced. However, these
messages are owned error messages of the
Assembler in contrast to the error messages
used by the researcher of this study. The error
messages are simple, clear, and specific. The
researcher designed the IDE’s own analyzer
that reads, screens, and analyzes correct
format for input and output operations as well
as the expressions such as mathematical, and
conditional. The developed IDE used and
invoked methods under C#’s Compiler class
similar to IDE for Turbo Assembler.

Logic Formulation

Farrel (2002) stated that once the
programmer has developed the logic of a
program, then and only then can he or she
write the program in one of many
programming languages that exist. This point
the programmer can start worrying about the
proper format in using each command in the
program. The program’s output is wrong
when it contains logical errors, however, a
program with syntax errors cannot execute.

Stated in the paper of Stachel (2013),

research on techniques for teaching computer
programming to novice learners has
suggested that introducing programming
concepts and theories is extremely difficult,

Knowledge
Requirements:
 IDE
 Logic

Formulation
 Flowchart
 Compiler

Theory
 Finite

Automata
 XML, CSS, C#

Software
Requirements:
 Visual Studio

2012

Hardware
Requirements:
 Processor at

least 847
(1.10GHz)

System Design
 Finite

Automata
 Entity

Relationshi
p Diagram

 System
Flowchart

System
Creation
 Program

Coding

Testing and
Debugging

IDE in
Program
Logic
Formulation

EVALUATION

because the learners have to adapt syntactical
methods of the programming language as well
as their interface to the programming world.
Computer programming for the novice
requires the understanding of a variety of
different areas such as logic and mathematical
concepts, syntax, the language interface,
algorithms, flowcharts, and pseudocode
associated with programming theory.

The heart of programming lies in

planning the program’s logic during this stage
of the programming process; the programmer
outlines the steps, determining what steps to
take in and how to order them in the program.
Solutions to problems can be done in many
ways. Flowcharts and pseudocode
(pronounced “sue-dough-code”) are the two
most common tools (Farrel, 2002).

Gill (2004) emphasized the benefits

of using the flowcharts as a teaching tool in
introductory programming classes.
Flowcharting has been an important
component of the overall learning in the
course. In addition, analysis of survey data
gathered from students suggested that
learning flowcharting early in the course has
benefited their learning in subsequent
programming assignments.

Commercially available system

produced by Matrix Multimedia, Flowcode is a
flow chart programming language. This makes
flowcode an excellent introduction into
programming programmable interface
controllers (PICs). Its flowchart programming
method allows users with little experience to
create an electronic system without writing
traditional code line by line. There are 3 steps
to program PICs: 1) Design using the drag and
drop flow chart icons and electronic
components on screen; 2) Simulate the
designed electronic system, program. The
menu controls allow users to step through
each icon in the program and show its effects
on the screen. Test the system’s functionality
if it still manages to produce same output; and
3) lastly, download the design. Flowcode
sends the program to the PIC micro
microcontroller device. Behind the scenes the
flowchart is turned into C-code which is then
compiled by Boost C compiler.

Memory Variable and Naming Convention

Data are entered into the program
using any input devices and the data entered
for processing are saved on a certain location.
This location is called variable (De la Rosa,
2008).

Variables like humans need names to

be identified. Each programming language has
its own error message, syntax error, for not
following the rule for variable naming. The
language interpreter uses a kind of system
finite automata to model the correct structure
for variable names.

Finite Automata

Commonly used programs such as
text editors and lexical analyzers found in
most compilers are often designed as finite
state systems. For example, a lexical analyzer
scans the symbol of a computer program to
locate the strings of characters corresponding
to identifiers, numerical constants, reserved
words, and so on. In this process the lexical
analyzer needs to remember only a finite
amount of information, such as how long a
prefix of a reserved word it has seen since
startup. The theory of finite automata is used
heavily in the design of efficient string
processors of these and other sorts.

Martin (1997) defined a Finite

Automaton, or finite-state machine
(abbreviated FA) as a 5-tuple (Q, Σ, q0, A),
where Q is a finite set (whose elements are
states) Σ is a finite alphabet of input symbols
q0Є Q (the initial state) A Q (the set of
accepting states) δ is a function from Q × Σ to
Q (the transition function)

For any element q of Q and any

symbol ɑ Є Σ, then δ (q, ɑ) as the state to
which the FA moves, if it is in state q and
receives the input ɑ.

Likewise, Hopcroft and Ullman (1979)
described finite automaton. (FA) as consisting
of a finite set of states and a set of transitions
from state to state that occur on input
symbols chosen from an alphabet Σ. For each
input symbol there is exactly one transition
out of each state (possibly back to the state

itself). One state, usually denoted q0, is the
initial state, in which the automaton starts.
Some states are designated as final or
accepting states. A directed graph, called a
transition diagram, is associated with an FA as
follows. The vertices of the graph correspond
to the states of the FA. If there is a transition
from state q to state p on input a, then there is
an arc labeled afrom state q to state p in the
transition diagram. The FA accepts a string x if
the sequence of transitions corresponding to
the symbols of x leads from the state to an
accepting state. The FA plays role in computer
design and parsing, the typed programs are
broken into tokens and then those tokens are
recognized through Automata theory which
happens in the first state of the compiler
design.

Compiler Theory

According to Muhammad (2013), the
compiler is a program that reads a program in
one language, the source language and
translates into an equivalent program in
another language. There are two parts of
compilation – the analysis phase and
synthesis phase. In the former the syntactic
structure and some of the semantic properties
of the source program are computed. The
computed properties are called the static
semantics. This includes all semantic
information that can be determined only from
the program without executing it with the
input data. The results of analysis phase
consist of either messages about syntax or
semantic errors in the program or a suitable
representation of the syntactic structure and
static semantic properties of the program.
This phase is independent of the properties of
the target language and the target machine.
The synthesis phase constructs the desired
target program from the intermediate
representation.

For his part Gill (2004) developed a

software called Flow C. It allows the user to
view the code implied by each symbol drawn
in the flowchart, however, it requires the
flowchart to be syntactically correct. This
means the user drawn flowcharts are valid in
terms of input and output, mathematical,
logical, and relational expressions. These are
different from the researcher’s study. The

designed IDE displays error messages
whenever parsed invalid expressions are
encountered. Also, Flow C was designed to
generate complete applications that may then
be compiled and run in MS Visual Studio.NET
which is an example of object-oriented
programming language.

C #

C# was modeled after C++

programming but some difficult features to
understand in C++ have been eliminated in
C#. It is very similar to Java because Java was
also based on C++. In Java, simple data types
are not objects unlike in C# every piece of
data is an object, providing all data with the
functionality of true objects. C# contains a GUI
interface that makes it similar to Visual Basic
but considered more concise than Visual
Basic.

Abella, et al. (2013), developed a

software using the language C#. Their study
was designed to translate the flowcharts into
their equivalent C language in proper syntax.
The GUI aspect of C# was used to design the
anticipated appearance of the software. Also,
the conversion from user-provided in
flowchart to C# was covered through
accessing the external file by C# compiler.
Similarly, with the developed IDE, it accessed
the Compiler parameters of C# so that each
output of the symbol on the console command
will be read and passed back to the IDE itself.
However, the flowchart symbols of the
developed IDE are Extensible Markup
Language format, while the first one is nodes
constructed using C# controls such as label
and textbox. Labels, textboxes, and buttons
are classes that can be instantiated as object
in object oriented programming.

Extensible Markup Language

Extensible Markup Language is a
perfectly good vehicle for describing data to
be transmitted over the Internet. XML is not
used for describing the semantics of data
neither replaces data modeling and database
design (Hay, 2007).

According to Ferrara of
webdesign.com, the key to viewing XML in a
browser is Cascading Style Sheets. Style
Sheets allow designers more flexibility when
creating the look for a web page and define
every aspect of an XML document, from the
size and color of the text to the background
and position of the non-text objects.
Cascading Style Sheet or CSS allows the Web
designer to control the page layout or a simple
way to add style such as font, colors, spacing,
and so forth. HTML deals with structure, while
CSS deals with style. CSS and HTML are having
some noticeable similar attributes in names
and values.

ISO 9126 Software Quality Model

 Table 1, ISO 9126 model, presents the
criteria with corresponding attributes that
indicate quality software.

Table 1
The ISO 9126 Model

Criteria Attributes
Functionality The presence of set of functions and

their specified properties. The
functions are those that satisfy stated
or implied needs.

Reliability The capability of the software to
maintain its functionalities under
specified conditions for specified
period of time.

Usability The usefulness of the software to meet
the user needs, and on the individual
assessment of such use, by a stated or
implied set of users.

Efficiency The level of performance of the
software and the amount of resource
used to meet the required
functionalities.

Maintainability The effort needed to make specified
modifications in the software.

Portability A set of attributes that bear on the
ability of software to be transferred
from one environment to another.

Method

Description of the Respondents

The respondents composed of 20

faculty members handling computer course,
10 students from BSIT, BSCS, and BSIS
courses, and 5 technical experts from the
College of Science were selected using
purposive sampling technique.

Research Design

The study used the developmental
method of research. The developed IDE is
designed to assist students in learning
programming through flowchart. Its interface
is most likely similar to other existing IDEs
including the window naming such as
workspace, toolbox/object controls, and
message. Its interface design introduces
students to Object Oriented Programming
(OOP).

Research Instrument

The IDE was evaluated by 35

respondents using ISO 9126 criteria for
quality software. Specifically, the IDE’s
functionality and reliability were tested by
drawing different sets of solutions.

The respondents rated the software

using a 5-point Likert scale with 5 being the
highest and 1 being the lowest.. The data were
collected and the overall mean was computed,
the results were interpreted using the scale
presented range in Table 2 and the
corresponding qualitative interpretation.

Table 2
The Scale Range and its Qualitative Interpretation

Range Qualitative Interpretation

4.51 – 5.00 Excellent
3.51 – 4.50 Very Good
2.51 – 3.50 Good

1.51 – 2.50 Fair
1.00 – 1.50

Poor

Results

The main screen of the IDE has five

(5) major parts: (a) Command window, (b)
Message window, (c) Problem window, (d)
Flowchart Controls Window, and (e) the
Workspace, as shown in Figure 2.

Figure2. Main Screen and the
Parts of the Developed IDE

Table 3
Flowchart Maker and Problem Manager Test Results

Module Steps Undertaken Observation/Result

Flowchart

Maker

1. Tested to click and drag each flowchart symbol to the

workspace.
2. Tested to connect one symbol to another symbol.

3. Tested to copy and delete flowchart symbols within the

workspace.

4. Tested to create and save flowchart file.

5. Tested to load existing flowchart file

1. The flowchart symbols can be

clicked and dragged.
2. They can be connected to other

symbols within the workspace.
3. They can be copied and deleted

from one workspace to another
or within the workspace.

4. The IDE can create new and
save flowchart file.

5. The IDE can load existing
flowchart files.

Problem

Manager

1. Tested to add problems in the database.

2. Tested to add test data for each problem in the database.

3. Tested to retrieve problems from the database.

1. Problems can be added in the

database.
2. Test data were tagged to the

selected problem.

3. Problems can be retrieved.

Test Results

The following tables present the
results of the test conducted.

Table 3 shows the test results for
flowchart maker and problem manager

modules. The IDE can create, edit, open, print,
and save flowchart. The symbols can be
copied, deleted, and connected to other
symbols within the same workspace.
Similarly, the problem manager can add,
update, and retrieve problems and test data.

Table 4
Compile Module Test Results

Steps Undertaken Observation/Result

A. The following steps tested the Compile module using a problem retrieved from Choose Problem
module.

1. Tested to retrieve problem: Insect Population.

2. Tested to click Compile icon for the following

flowchart with:
 Uninitialized variable Initial, and typed input

on the output symbol.
 Wrong formula: GrowthRate=(Pop

WekLater-Initial Pop)/ PopWekLater
 Correct logic and inputs: 100 and 130, and 80

and 120.

3. Observed the message for correct/incorrect logic
and error messages.

1. The Insect Population problem was retrieved.

2. Compile icon can be clicked and;

 Can check correct syntax for variable

declaration and output operation, see
Appendix A Figure 14.

 Can check wrong solution or incorrect logic
based on Test data, see Appendix A Figure 15.

 Can check correct logic based on Test data, see
Appendix A Figure 16.

3. The Compile module can check the program
expressions and operations.

B. The following steps tested the compile module using not a problem-based flowchart.

1. Tested to draw flowchart that computes the area
of a triangle (T) or square (S).

2. Tested to click Compile icon for the following
flowchart:
 Used a word equal instead of (=) operator

inside the selection symbol: figure equal “s”.
 Unbalanced the parentheses in the arithmetic

expression:
Area= (b*h/2.

 Used valid expressions for all symbols.

3. Observed the message for error messages and
syntactically correct flowchart structure.

1. The flowchart can be drawn.

2. Compile icon can be clicked and;
 Can check correct syntax for conditional

expression, see Appendix A Figure 17.
 Can check correct syntax for arithmetic

expressions, see Appendix A Figure 18.
 The Compile module can check program

expressions and operations, see Appendix
A Figure 19.

3. The compile module can check the correct
program expression and operation.

C. The following steps tested the compile module if it checks correct flowchart structure: one Start

symbol, more than two End symbols, and no connections on symbols.

1. Tested to create a flowchart with more than one

End symbol.

2. Tested to create a flowchart with more than Start
symbol.

3. Tested to create a flowchart with symbols not

connected and no label path for decision symbol.

1. The Compile module accepted the flowchart
structure. This means that the compile module
can check PLF rule, see Appendix A Figure 20.

2. The Compile module produced an error
message: “Error: Multiple Start”, see Appendix
A Figure 21.

3. The Compile module produced an error

message: “Error: Lack of Connections and
Error: Invalid Label, T/F only”, see Appendix A
Figure 22.

Table 4 shows the testing done in the
IDE’s compile module. There are three
scenarios, A, B, and C, were used to test the
IDE. First scenario, it checks the logic of the
flowchart, that is a solution to the problem

retrieved from Choose problem module, it
produces messages pertaining to each given.
The IDE detects undeclared variable, wrong
solution/ logic, and correct solution/logic.

Table 5
Debug Module Test Results

Steps Undertaken Observations/ Results
The following steps tested the Debug module using flowchart that displays where the axis or quadrant of a point lies.

1. Tested to click the Debug icon.

1. The Debug icon could be clicked then it showed the
Debug Program window.

2. Tested to simulate using another input:-3 and 5.

2. The Debug Program window displayed variables values
and the expected output on the Output window: “2”, see
Appendix A, Figure 23.

3. Tested to simulate using input: 2 and 2.

3. It displayed variables values and the output: “1”, see
Appendix A, Figure 24.

4. Tested to simulate using input: -10 and -20.

5. Tested to simulate using input: 0 and 0.

6. Observed the simulation.

4. It displayed variables values and the output: “3”, see
Appendix A, Figure 25.

5. It displayed variables values and the output: “origin”, see
appendix A, Figure 26.

6. The Debug module can simulate the flowchart.

The following steps tested the Debug module using flowchart that obtains the possible roots of the linear equation: 4x + 3y –
9z = 5 from 0 to 5.

1. Tested to click the Debug icon.

2. Observed the simulation.

1. The clicked Debug icon showed the Debug Program
window.

2. The Debug module displayed 2, 2, and 1. Then 2, 5, and 2.
Then 5, 1, and 2. Then 5, 4, and 3, see Appendix A, Figure
27.

Table 5 shows the test results done in

the IDE’s debug module. The flowchart that
displays the axis/quadrant where a point lies
is debugged using 4 sets of inputs and the
results are noted. First test input is (-3, 5)
then the output is 2, meaning the point lies in
quadrant two. Second, test input is (2, 2)

then the output is quadrant 1. For test input (-
10,-20), debug window displayed the output
3.

 The flowchart that determines all
possible roots of the linear equation, 4x + 3x -
9z = 5, is shown in Figure 27.

Table 6
Reliability Test Results

Steps Undertaken Observations/Results

Problem A. Division by Zero. Write a flowchart that accepts and divides two integers.

1. Tested to solve a problem that performs the
division of two integers.

2. Tested to input two integers for variables x and y,
5 and 0, respectively.

3. Observed the simulation.

1. The IDE can draw the flowchart.

2. It can store the values, 5 and 0, into variables, x
and y, respectively.

3. It can continue execute division by zero
instruction. Showed on the Output window is
Infinity value for variable z. See Appendix B,
Figure 28.

Problem B. Nonterminating Loop, Write a flowchart that displays the numbers from 0 to 10.

1. Tested to draw the flowchart using Post- test
loop.

2. Tested to set the conditional expression: ctr> 0.

Observed the simulation.

1. The IDE can draw the flowchart.

2. The IDE can manage to continue execute in a
non-terminating environment. See Appendix B,
Figure 29.

Problem C. Not A Number (NAN) result on Modulo operation. Write a flowchart that scans pairs of integers until it reaches a

pair in which the first integer evenly divides the second.

Using Post-test Loop and Pre-test Loop

1. Tested to draw flowchart that scans two integers

continuously.

2. Tested to input set of integers: 4 and 21, 3 and
16, 0 and 10, and 5 and 25.

3. Observed the simulation.

1. The IDE can draw the flowchart.

2. It can accept integers.

3. It can manage to continue execute instruction 10

Mod 0. The output showed is 25 and 5. See
Appendix B, Figure 30 and Figure 31.

Problem D. Write a program that determines where the quadrant or axis of a point, x and y coordinates, lies

Multiple Selection Structure and Nested Multiple Selection Structure

1. Tested to draw the flowchart.

2. Tested to input point 5 and 0.

3. Observed the simulation.

1. The IDE can draw flowchart.

2. It can accept input: 5 and 0.

3. It showed the output: “x-axis”. See Appendix B,
Figure 32 and Figure 33.

Problem E. Write a program that accepts an integer. The program outputs the sum of its digits. For example 564, the

output is 15.

Pre-test Loop and Post-test Loop

1. Tested to draw flowchart.

2. Tested to input an integer, 564.

3. Observed the simulation.

1. The IDE can draw flowchart.

2. It can accept input: 564.

3. It showed the output, 15. See Appendix B, Figure 34
and Figure 35.

Table 6 shows the reliability test
results of five problems, Problem A to E
solved using different solutions. Problem A is
a flowchart that tries to divide 5 by 0; it gives
a NaN result, instead of force exit from
program which happens for some structured
programming language. Flowchart for
Problem B has a non terminating loop,
however, the IDE manages to display the
output and continues the program. The test
for Problem C is similar to Problem except
that it a mod operator in which the second
operand is 0. Problem D uses two strategies,
multiple-selection and nested multiple-
selection structures, both solve it correctly
and produce the same output. Problem E is
solved using two different solutions: post-test

and pre-test loops, but shows the same
output.

The IDE and Flowcode

The Flowcode and IDE for PLF are
both designed to assist users with little
experience in programming. Flowcode helps
PIC programmers to design, simulate, and test
the functionality of the electronic systems
before sending the program to
microcontroller device in minutes, while the
latter helps novice programmers to formulate
correct steps to solve a given task before
translating to computer language. Both
require its users to have a correct logic.

Flowcode and IDE both have GUIs
containing the standard flowchart symbols
such as input/output, process, decision, and
terminal. Symbols are drag and drop icons
with each icon equivalent to one line of
program code. Both have controls within the
environment allowing users to start, stop,
pause, and step through their program one
icon at a time.

Evaluation Results

The developed system entitled “An
Integrated Development Environment in
Program Logic Formulation” gained an overall
mean of 4.62 with a descriptive rating of
Excellent.

Table 7
Summary of Respondents’ Rating (n=35)

Criteria

Mean Descriptive

Rating

Functionality 4.68 Excellent
Reliability 4.53 Excellent
Usability 4.72 Excellent
Efficiency 4.54 Excellent
Maintainability 4.60 Excellent
Portability 4.66 Excellent

Overall Mean 4.62 Excellent

Table 7 shows the summary of mean
rating per criterion. It further yields that the
highest mean score is 4.72 obtained by the
criterion, Usability. The criterion functionality
obtained an overall mean of 4.68 with a
descriptive rating of excellent. Efficiency got a
mean of 4.54. The indicators of
maintainability garnered a mean of 4.60,
interpreted as excellent. Portability obtained a
mean of 4.66 interpreted as excellent, while
Reliability a mean of 4.53 interpreted as
excellent.

Discussion

Based on the results of the test and

evaluation conducted, the developed IDE can
provide a working environment where
students can create, save, open, edit, and print
flowcharts. It can check invalid expressions
for input, output, mathematical, relational and
logical and display the error for invalid

expressions. Also, it can simulate flowchart
from Start through End symbols detect the
presence of wrong logic in the flowchart,
capable of maintaining storage of questions
and its test data.

The following are the summary of

evaluation:

1. Functionality. The evaluators rated the
system as excellent. This means that the
software performs the task required
accurately, its components interact
properly with each other, complies with
the needs of the students, and is protected
from unauthorized access.

2. Reliability. The evaluators rated the
system as excellent which proves that the
software failures occur less often, has
resistance to failures, and has the ability
to recover itself after failure.

3. Usability. The evaluators rated the
system as excellent. It obtained the
highest mean rating of 4.72. This could be
attributed to the evaluators’ comments
that the software is easy to learn,
understand and operate since the
software runs on a widely used Windows
environment.

4. Efficiency. The evaluators rated the
system as excellent. The software
responds quickly and utilizes resources
efficiently. The mean rating falls within
the range of the scale value excellent,
which indicates that all the indicators
have been satisfied.

5. Maintainability. The evaluators rated the

system as excellent, its indicators of
maintainability: software failures are easy
to diagnose, the software continues to
operate even if changes had been made,
and the software is easy to test.

6. Portability. The evaluators rated the

system as excellent. This means that the
IDE can be easily installed, its
components configured, and it complied
with portability standards.

Conclusion

In light of the aforementioned
findings, the following conclusions are drawn:

1. The IDE for Logic Formulation was

successfully designed such that:

 Logic written in flowchart form can
be created, saved, modified, and
printed.

 Logic can be checked and verified
based on the required output stated
in the problem. Correct format for
input and output operations,
mathematical, relational and logical
expressions are verified.

 Logic can be visually followed
through a Debug window. Variables
and its contents are displayed on the
Debug window to understand logic
flow.

2. The IDE was successfully created using
C#, CSS, and XML.

3. Tested according to functionality and
reliability, the system found that all
modules performed the tasks as designed.

4. The developed system was evaluated as

Excellent in terms of functionality,
reliability, usability, efficiency,
maintainability, and portability, which
proves that the system can be a useful
tool to develop students’ skills in
programming.

Recommendations

The following are suggested for
further enhancement of the developed
software.

 Translator from flowchart to C codes
may be included to achieve better
performance of the students in the
subject Computer Programming

 Included additional data type such as
Array may widen the scope for
possible answers.

 Modular programming be made a

part to make the software more
suitable for Computer Programming
1 syllabus.

 On-page Connector be included to

present a more organized flow lines
within the flowchart.

References

Book

De la Rosa, Jerald H. (2008). Simple: Program

Logic Formulation. Philippines: Andes
Mountain Printers

Farrell, Joyce. 2002. Programming Logic and
Design. Canada: Course Technology
Thomson Learning.

Hopcroft, John E. (1979). Introductionto
Automata Theory, Languages and
Computation. Canada: Addison-
Wesley Publishing Company, Inc.

Martin, John C. (1997). Introduction to

Languages and The Theory of
Computation. Singapore: The
McGraw-Hill Companies, Inc.

Van Dam, Bert. (1988). Flowcode 6.

Netherlands: Wilco, Amersfoot ©
Elektor International Media 2014.

Unpublished Thesis

Abella, Rubeltio R., et. al. (2013). Creating a
 Data Flow Paradigm Programming
 Language Written in C#. BSCS Thesis.
 Ama Computer College.

Mendoza, Benjami., et al. (2006). “Integrated

Development nvironment for Turbo
Assembler.” BSC major CS Thesis.
Technological University of the
Philippines,

Journals and Other Publications

Gill, T. G. (2004). Teaching Flowcharting with

Flow C. Journal of Information
Systems. Education, Vol 15 Issue 1: 65
– 77.

Hay, David C. (2007). Data Structure: Data

Modelingor XML. The Data
Adminstration News Letter, 28-30.

Stachel, J., Marghitu, D., Brahim, T. (2013).

Managing Cognitive Load in
Introductory Programming Courses:
A Cognitive Aware Scaffolding Tool.

Journal of Integrated Design and Process
 Science, Vol. 17 Issue 1:37-54.

Electronic Sources

Ferrari, Darla.(2014). XML and CSS. Retrieved

from Web design website: http://
www.webdesign.com/odbeginner/
xml/a/xml-and-css.htm.

Muhammad, Rashid Bin. (2013). Compiler

Lecture Notes. http://bscs16.blog
spot.com/2011/04/dc-lecture-
notes_06.html.

O’Dell, Jolie. (2010). A Beginner’s Guide to
Integrated Development Environment.
Retrieved from Mashable website:
http://mashable.com/2010/10/06/i
de-guide.

Appendices

 APPENDIX A

SCREEN SHOTS FOR FUNCTIONALITY TEST
RESULTS

The following figures show the

results of functionality test conducted by the
researcher.

Figure 22.Syntax Error Result for Symbols not Connected
and Labeled

Figure 23. Debug Result Using Input -3 and 5

Figure 24. Debug Result Using Input 2 and 2

Figure 25. Debug Result Using Input 10 and -20

Figure 35. Using Pre-test Loop for Problem E

