Ethnobotanical study of indigenous plants used by local people of Agusan del Sur, Philippines

Rose D. Arquion1*, Cesario C. Galanida1, Brenda Villamor1, Henry T. Aguilar1

1Philippine Normal University, Prosperidad, Agusan del Sur, Philippines

ARTICLE INFORMATION

Article History:
Received 08 January 2015
Received in revised form 26 February 2015

*Corresponding author: rosearquion@yahoo.com

ABSTRACT

Medicinal and wild edible plants are important for human existence. This study aimed to investigate medicinal uses of indigenous plants to human and to document wild edible plants (WEP). Ethnobotanical data were obtained from 493 informants using semi-structured interviews and field observations done in 32 communities. The study documented 126 species of medicinal plants belonging to 57 families and 105 genera. Herbs were largely utilized and prepared mostly by decoction, extraction, and infusion to cure human diseases/ailments. The largest number of taxa of medicinal plants came from Families of Gramineae and, Lamiaceae (7), Euphorbiaceae (6), Liliaceae, Asteraceae, Moraceae and, Malvaceae (5). Some documented 53 species of wild edible plants belong to 46 families mostly utilized as vegetables for food and sources of income. The commonly used wild edible plants belong to Family Convolvulaceae, Musaceae, and Arecaceae. Documenting these indigenous plants and associated ethnobotanical knowledge can be used as basis for developing management plan for conservation and sustainable use.

Keywords
Ethnobotany, Medicinal Plants, WEP

Introduction

One of the millennium development goals is sustainability of the environment. Forest preservation, plant resources in the community should be available for its use for the coming generations.

Ethnobotany, the study of plants used by specific cultures for various reasons, traces the development of modern medicine. Medicinal plants have important contributions in the healthcare system of local communities as the main source of medicine for the majority of the rural population (Bekalo, 2009).

An inquiry into the ethnobotanical knowledge of students in Arizona, USA revealed that students have limited knowledge of the plant domain listing only an average of five plants out of twenty seen from a video clip, the majority of which were non-native (O’Brien, 2010). The research results highlighted how cultural knowledge about local plants can be applied to educational programs that promote experiential learning.

The United Nations Convention on Biological Diversity (CBD) (Uprety, 2012) strived to implement its three major goals: conservation of biological diversity; sustainable use of its components; and a fair and equitable sharing of the benefits from the use of genetic resources. These goals are applicable to medicinal plant resources. According to CBD’s article 8 (j): "Traditional knowledge, Innovations and Practices, signatories agree to respect, preserve and maintain knowledge, innovations and practices of indigenous and local communities embodying traditional lifestyles relevant for the conservation and sustainable use of biological diversity and promote their wider application with the approval and involvement of the holders of such
knowledge, innovations and practices and encourage the equitable sharing of the benefits arising from the use of such knowledge innovations and practices.”

Balch (2012) said that herbs support general health and the top reasons given for using herbs are boosting energy (60%); preventing colds (56%); boosting immune system (54%); improving sleep (43%); and helping prostate (18%) of the 500 males in the survey.

Purposely, this study tried to investigate the medicinal uses of indigenous plants to human and to document wild edible plants (WEP) available at Prosperidad, Agusan del Sur, Southern Philippines.

Specifically, the study sought to shed light on the following research questions:

1. What the medicinal plants are used by the local people in Agusan del Sur, its utilization, preparation and administration routes?

2. What are the wild edible plants and how are these utilized and prepared by the local people?

3. Which species of the wild edible plants can be a source of income?

Prosperidad, Agusan del Sur where the study was conducted, has thirty two (32) communities which are remote and very far from D.O. Plaza Memorial Hospital located in Patin-ay, Agusan del Sur, the government center of the province. Due to the distance and scarcity of public utility vehicles, some folks used medicinal plants to treat illnesses and diseases. However, most of the folks are not aware of the benefits of the medicinal plants and tend not to take care and value the resources.

In Eastern Botswana, there is a shrinking on the knowledge and on uses of medicinal plants due to migration to urban areas and that young generation lost their interest in people medicinal uses of plants (Motihonka & Nthoiwa, 2013). The problem also assails in Agusan del Sur, Philippines and similar places where over the counter drugs are available.

In the study conducted by Bekalo (2009) in Konta Special Woreda, Ethiopia claimed that environmental and cultural changes threaten the resources which signal the need to take measures for public awareness in conserving the medicinal plants in the natural ecosystem

One of the reasons of losing the knowledge of traditional medicine in West Ethiopia was due to advancement of knowledge of people in the place. Since traditional medicine is transferred orally from generation to generation, basic information in the use of the plants and the part used, drug preparation method, the diseases treated and others may be lost and discarded in the knowledge transfer process (Megersa et. al, 2013).

In another study conducted by Au (2008) in Guangdong , China and at Jeolla, Korea and by Kim and et., al. (2012), revealed that the cause for fast disappearance of traditional culture and natural resources was linked to urbanization and industrialization, suggesting that unrecorded information may be lost forever.

The people of Quijar tribe of India had maintained the preservation of knowledge due to continues reliance to WEP, but decline in the use of these plants may gradually lead to fading away of indigenous knowledge associated with their use. Anthropogenic factors are evident causing wild edible plants for they are under growing pressures (Rashidet. al, 2008). Overgrazing and stocking, expansion of agricultural land forest cuttings for construction and technology, over exploitation of forest products and uncontrolled fire settings threaten the WEP in Janmu and Kashmir State-India.

Wild edible plants in Bopa, India are gathered from different habitats and provide as source of income and livelihoods, needs urgent conservation initiatives for ecological stability, human well-being and also as local heritage (Pegu et al, 2013). Deforestation and other anthropogenic activities and natural
calamities, particularly erosion is a big threat on their ecosystem.

Educating people about non timber forests products may promote better harvesting practices and improve the likelihood of sustainable use and resource conservation (Burgess, 1994). Understanding the relationship between indigenous people and their threatened economic plants can aid the conservation effort of many levels.

In the Philippines, gardens of medicinal plants are part of culture. People of different status are using herbal plants as remedies for headaches, stomach ache, fatigue, muscle pains, spasm, gas pains, and wounds, much more in their local communities where medical practitioners are very few who cannot attend to the needs of the people for healing of the ailments they have.

Republic Act 8423, otherwise known as the “Traditional and Alternative Medicine Act (TAMA) of 1997 gave rise to the creation of the Philippine Institute of Traditional and Alternative Health Care (PITACH) which is tasked to promote and advocate the use of traditional and alternative health care modalities through scientific research and development.

Ammakiw, C.L. & Odiem, M.P. (2014), hold that there was no significant relationship determined on the level of knowledge on the preparation of the herbal plants except origin where the highlanders were significantly more knowledgeable than the lowlanders. People in Kalinga, Northern Philippines were not knowledgeable on the uses of Cassia alata L. (akapulko) to cure cough and as mouthwash and purgative; on the antipyretic effect of Momordica charantia (ampalaya) and the use of Psidium guajava (guava) to prevent nose bleeding.

Miano, R.S. & Alonso, C.G. (2011) stated that medically-important plant roots cited by traditional healers from the four municipalities of Cebu, Philippines reported to be very effective in treating ailments/diseases are the Justicia sp. (mandalasang puti) in Argao, Euphorbia hirta Linn. (mangagaw) in Naga, male Carica papaya (papaya) in San Fernando, and Ortosiphon aristatus (wachichao) in San Remigio.

With the common causes of losing the medicinal and edible plants in almost any part of the world, documentation of the indigenous knowledge of the local people on the utilization of these indigenous plants in Agusan del Sur, Philippines is much needed for environmental awareness, management, reproduction and sustainability for the next generation.

Framework of the Study

Thompsonianism Theory (Thompson, 1981) stated that a disease is a result of a decrease derangement of the vital fluids, brought by loss of animal heat. The resulting symptoms are interpreted as efforts of the vital force to get rid of the toxic encumbrances generated. The Physiomedicalism Theory came as the second major stream of thought in herbal medicine. Ultimately, this new system of herbal medicine retained much of what had been accepted as fundamental in the Thompsonianism Theory. Thus, herbal function was thought of as aggregate expression of vital force, acting through cellular metabolism to maintain the functional integrity of the entire organism.

Method

This study used the descriptive survey research design. It employed a purposive sampling of 490 informants with age ranging from 40 to 80, and three herbalists of ages 50 - 75 who used traditional healing practices for more than 30 years and who are natives in the 32 communities of Prosperidad, Agusan del Sur, Southern Philippines. For ethical purpose, the researchers asked permission from community chairmen and key informants to answer questions during the documentation process of the medicinal and wild edible plants.
Ethnobotanical Data Collection

Ethnobotanical data were collected from July 2013 to May 2014 through semi-structured interviews and field observations with selected knowledgeable elders, herbalists. The community health workers using the vernacular (Visayan language). Information regarding plant part used, preparation administration routes and its efficacy were documented.

Photographs were taken for plants found on their home gardens and available in the nearby place during the visit. For plants found in the jungle, local names were identified and characteristics were given by the informants.

Plant Identification Procedure

Preliminary identification of the specimens was documented by taking photographs. Characteristics were noted for accurate classification, then referred to the website used to identify its common name, scientific name through the book “Amazing Healing Plants” by JC Kurian and website stuartchange.com and other internet sources.

Ethnobotanical Data Analysis

With descriptive statistical method using percentage, the study tried to analyze and summarize data on the reported medicinal and wild edible plants and associated indigenous knowledge.

Results and Discussion

The informants reported one hundred-twenty-six (126) plant species that they actually used for medicinal purposes. The total number of taxa is summarized into total number of species recorded, families and genera of medicinal plants used by local people in Prosperidad, Agusan del Sur, Philippines, as shown in Table 1.

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of Taxa Recorded</td>
</tr>
<tr>
<td>Medicinal Plants</td>
</tr>
<tr>
<td>Number of Species</td>
</tr>
<tr>
<td>Families</td>
</tr>
<tr>
<td>Genera</td>
</tr>
</tbody>
</table>

Table 2. List of Medicinal Plants used by Local People in Agusan del Sur, Philippines (see Appendix A.)

The degree of informants’ knowledge in each medicinal plant in treating specific health problems was identified in general. The plants are grouped according to a disease treated.

<table>
<thead>
<tr>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medicinal Plants used to treat Various Ailments/Diseases</td>
</tr>
<tr>
<td>Hypertension</td>
</tr>
<tr>
<td>Acorus gramineus,</td>
</tr>
<tr>
<td>Anonna muricata,</td>
</tr>
<tr>
<td>Catharanthus roseus,</td>
</tr>
<tr>
<td>Blumea balsamifera,</td>
</tr>
<tr>
<td>Crescentia cujete,</td>
</tr>
<tr>
<td>Tabebuia heptaphylla,</td>
</tr>
<tr>
<td>Ipomeoeae paniculata,</td>
</tr>
<tr>
<td>Orthosipon aristatus Benth,</td>
</tr>
<tr>
<td>Kalanchoe pinnata,</td>
</tr>
<tr>
<td>Momordica spp.</td>
</tr>
<tr>
<td>Andropogon citratus,</td>
</tr>
<tr>
<td>Centella asiatica,</td>
</tr>
<tr>
<td>Artocarpus heterophyllus,</td>
</tr>
<tr>
<td>Corchurus olitorius,</td>
</tr>
<tr>
<td>Vitex negundo,</td>
</tr>
<tr>
<td>Curcuma longa.</td>
</tr>
<tr>
<td>Measles</td>
</tr>
<tr>
<td>Euphorbia hirta,</td>
</tr>
<tr>
<td>Tinosphora rumphii Boerl.</td>
</tr>
<tr>
<td>Theobroma cacao</td>
</tr>
<tr>
<td>Arthritis</td>
</tr>
<tr>
<td>Acorus gramineus,</td>
</tr>
<tr>
<td>Blumea balsamifera,</td>
</tr>
<tr>
<td>Symphytum officinale,</td>
</tr>
<tr>
<td>Jatropha curcas,</td>
</tr>
<tr>
<td>Premma odorata Blanco,</td>
</tr>
<tr>
<td>Curcuma longa</td>
</tr>
<tr>
<td>Colds</td>
</tr>
<tr>
<td>Acorus calamus,</td>
</tr>
<tr>
<td>Artemisia vulgaris,</td>
</tr>
<tr>
<td>Mentha cordofilia Opiz,</td>
</tr>
<tr>
<td>Kalanchoe pinnata,</td>
</tr>
<tr>
<td>Averrhoa carambola,</td>
</tr>
<tr>
<td>Kaempferia galanga L.</td>
</tr>
<tr>
<td>Snake bite</td>
</tr>
<tr>
<td>Sansevieria trifasciata Prain.</td>
</tr>
<tr>
<td>Hyptis suaveolens L. Poit</td>
</tr>
<tr>
<td>Teething of Baby</td>
</tr>
<tr>
<td>Imperata cylindrica L. Beauv.</td>
</tr>
<tr>
<td>Heteropogon contortus,</td>
</tr>
<tr>
<td>Cucurbita maxima,</td>
</tr>
<tr>
<td>Allium schoenoprasum.</td>
</tr>
<tr>
<td>Asthma</td>
</tr>
<tr>
<td>Vitex negundo,</td>
</tr>
<tr>
<td>Allium odorum Linn.</td>
</tr>
<tr>
<td>Piper betle,</td>
</tr>
<tr>
<td>Kleinhovia hospita Linn.</td>
</tr>
<tr>
<td>Nauclea orientalis L.</td>
</tr>
<tr>
<td>Condition</td>
</tr>
<tr>
<td>-----------------------------</td>
</tr>
<tr>
<td>Abdominal discomfort/stomachache</td>
</tr>
<tr>
<td>Toothache</td>
</tr>
<tr>
<td>Goiter</td>
</tr>
<tr>
<td>Cyst</td>
</tr>
<tr>
<td>Bronchitis</td>
</tr>
<tr>
<td>Famish</td>
</tr>
<tr>
<td>Urinary Tract Infection</td>
</tr>
<tr>
<td>Hair loss/ Hair fall</td>
</tr>
<tr>
<td>Migraine Cancer</td>
</tr>
<tr>
<td>Leukemia</td>
</tr>
<tr>
<td>Anti-cancer</td>
</tr>
<tr>
<td>Bleeding Wounds</td>
</tr>
<tr>
<td>Viral diseases/ Infection</td>
</tr>
<tr>
<td>Body pain</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Plant(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes</td>
<td>Gossypium herbaceum Linn., Hypsia suaveolens L. Poit, Blumea balsamifera, Panax ginseng, Annona muricata Linn.</td>
</tr>
<tr>
<td>Overfatigue</td>
<td>Heliotropium indicum Linn. Rhoea discolor, Pseudelephantopus spicatus (Juss ex Hubi.) C.F. Backer, Gossypium herbaceum Linn.</td>
</tr>
<tr>
<td>Pain reliever during labor</td>
<td>Piper nigrum</td>
</tr>
<tr>
<td>Spasm</td>
<td>Blumea balsamifera</td>
</tr>
<tr>
<td>Flatulence</td>
<td>Blumea balsamifera, Impatiens balsamina Linn.</td>
</tr>
<tr>
<td>Diabetes</td>
<td>Artemisia vulgaris, Piper betle, Kaemppferia galangal L., Jatropha curcas, Hysptis suaveolens L. Poit, Elaeis guinessis, Heteropogon contortus, Gossypium hirsutum, Impatiens balsamina Linn.</td>
</tr>
<tr>
<td>Hepatitis</td>
<td>Curcuma longa, Saccharum officinum.</td>
</tr>
<tr>
<td>Sprain</td>
<td>Artemisia vulgaris, Ficus stipulosa Miq. Linn.</td>
</tr>
<tr>
<td>Skin Diseases</td>
<td>Artemisia vulgaris, Derris trifoliata, Carica papaya, Tinosphora rumphi Boerl. Lunasia amara Blanco, Coleus blumei, Ipomea paniculata</td>
</tr>
<tr>
<td>Sore eyes</td>
<td>Euphorbia hirta</td>
</tr>
<tr>
<td>Boils</td>
<td>Kalanchoe pinnata, Euphorbia nervosa, Theobroma cacao,</td>
</tr>
<tr>
<td>Diarrhea</td>
<td></td>
</tr>
<tr>
<td>Anemia</td>
<td>Momordica charantia, Arachis hypogeaal, Centella asiatica.</td>
</tr>
<tr>
<td>Cancer</td>
<td>Catharanthus roseus, Catharanthus roseus, Panax ginseng</td>
</tr>
<tr>
<td>Leukemia</td>
<td>Moringa oleifera, Catharanthus roseus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Plant(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes</td>
<td>Gossypium herbaceum Linn., Hypsia suaveolens L. Poit, Blumea balsamifera, Panax ginseng, Annona muricata Linn.</td>
</tr>
<tr>
<td>Overfatigue</td>
<td>Heliotropium indicum Linn. Rhoea discolor, Pseudelephantopus spicatus (Juss ex Hubi.) C.F. Backer, Gossypium herbaceum Linn.</td>
</tr>
<tr>
<td>Pain reliever during labor</td>
<td>Piper nigrum</td>
</tr>
<tr>
<td>Spasm</td>
<td>Blumea balsamifera</td>
</tr>
<tr>
<td>Flatulence</td>
<td>Blumea balsamifera, Impatiens balsamina Linn.</td>
</tr>
<tr>
<td>Diabetes</td>
<td>Artemisia vulgaris, Piper betle, Kaemppferia galangal L., Jatropha curcas, Hysptis suaveolens L. Poit, Elaeis guinessis, Heteropogon contortus, Gossypium hirsutum, Impatiens balsamina Linn.</td>
</tr>
<tr>
<td>Hepatitis</td>
<td>Curcuma longa, Saccharum officinum.</td>
</tr>
<tr>
<td>Sprain</td>
<td>Artemisia vulgaris, Ficus stipulosa Miq. Linn.</td>
</tr>
<tr>
<td>Skin Diseases</td>
<td>Artemisia vulgaris, Derris trifoliata, Carica papaya, Tinosphora rumphi Boerl. Lunasia amara Blanco, Coleus blumei, Ipomea paniculata</td>
</tr>
<tr>
<td>Sore eyes</td>
<td>Euphorbia hirta</td>
</tr>
<tr>
<td>Boils</td>
<td>Kalanchoe pinnata, Euphorbia nervosa, Theobroma cacao,</td>
</tr>
</tbody>
</table>
Cocos nucifera,
Impatiens balsamina Linn.,
Basella rubra,
Aloe barbadensis Mill.
Curcuma longa.
Caesalpinia sappan
Hypotis capitata
Bixa orellana,
Rheo discolor,
Curcuma longa,
Artemisia vulgaris,
Mentha cordifolia Opiz.,
Blumea balsamifera,
Impatiens balsamibera Linn.,
Premna odorata Blanco,
Kaempferia galangal L.,
Zingiber officinale,
Hibiscus rosa sinensis,
Jatropha curcas,
Callicarpa formosana Rolfe,
Allium cepa,
Allium achoenoprasum,
Muntingia calabura
Kalanchoe pinnata,
Mentha crispa Blanco,
Euphorbia hirta,
Kleinovia hospital Linn.,
Corchurus olitorius,
Piper betle,
Vitex negundo,
Citrofortunella microcarpa,
Tinosphora cordifolia,
Mentha crispa Blanco,
Avetrrhoa carambola,
Callarica formosana Rolfe,
Coleus blumei,
Allium schoenoprasum,
Allium cepa,
Allium achoenoprasum,
Muntingia calabara,
Kalanchoe pinnata,
Curcuma longa.
Hypepis capitata
Rheo discolor,
Persia Americana,
Ziziphus Linn. Lam.,
Tinosphora cordifolia,
Psidium guajava,
Blumea balsamifera,
Anonna muricata Linn.,
Moringa oleifera,
Garcinia mangostana L.,
Centella asiatica,
Muntingia calabura,
Coleus blumei,
Coleus aromaticus,
Caesalpinia sappan.

Hemorrhage
Dyspepsia
Cough

Gastro-intestinal pain
Colds
Diarrhea / LBM

Bruise
Headache
Fractures

Colic
Kidney problem

Vomiting
Insect Bites

Stiff neck
Alopecia
Swelling

Splitting of blood
Folliculitis
Ulcer

Hyperacidity

Antibiotic

Clogged vessels

Constipation
External

Heart burn
Wounds

Moringa oleifera,
Bischofia javanica,
Curcuma longa
Althenanthera ficoidi var. Tizickian (regel) Backer.
Allium schoenoprasum,
Piper betle,
Nicotinia spp.,
Premma odorata Blanco,
Zingiber officinale
Artemisia vulgaris,
Kalanchoe pinnata,
Cucurbita maxima,
Muntingia calabara,
Hesperantha cocinea,
Mentha crispa Blanco,
Coleus blumei,
Spondias pinnata,
Vitex negundo,
Averrhoa carambola,
Tinosphora cordifolia,
Moringa oleifera,
Euphorbia hirta,
Rhoeo discolor,
Allium schoenoprasum,
Kaempferia galanga L.
Curcuma longa,
Mentha crispa Blanco,
Kalanchoe pinnata,
Artemisia vulgaris,
Elaeis guiniensis
Jatropha curcas,
Coleus aromaticus
Curcuma longa,
Kalanchoe pinnata,
Curcuma longa,
Mentha crispa Blanco,
Kalanchoe pinnata,
Artemisia vulgaris,
Lagerstroemia speciose,
Orthosiphon aristatus Benth,
Centella asiatica
Garcinia mangostana L.
Mentha crispa Blanco,
Lunasia amara Blanco
Mentha crispa Blanco
Mentha crispa Blanco
Coleus blumei,
Andropogon citratus,
Theobroma cacao,
Blumea balsamifera
Coleus blumei,
Coleus blumei,
Moringa oleifera,
Piper betle
Orthosiphon aristatus Benth
Coleus aromaticus,
Gliricidia sepium
Coleus aromaticus
Gmelina arborea,
Andrographis paniculata,
Jatropha curcas

Andrographis paniculata,
Jatropha curcas

Musa paradisiaca,
Syzgium cumunii Linn.
Albezia falcataria,
Impatiens balsamina Linn.
Solanum melongena,
Coleus blumei,
Tinosphora rumphii Boerl.

Heart burn
Wounds

Hyperacidity

Antibiotic

Clogged vessels

Constipation
External
inflammation: Gliricidia sepium, Theobroma cacao, Basella rubra, Gmelina arborea, Curcuma longa, Pseudelephantopus spicatus (Juss ex Hubi.) C.F. Backer, Andropogon citratus
Muscular pain: Gmelina arborea, Curcuma longa, Pseudelephantopus spicatus (Juss ex Hubi.) C.F. Backer, Andropogon citratus
Joint pains: Pseudelephantopus spicatus (Juss ex Hubi.) C.F. Backer, Andropogon citratus

Bleeding (Menopausal symptom): Musa sapientum
Heart diseases: Musa sapientum
Open Wounds: Musa textilis
Canker sore: Syzygium aquum
Chicken pox: Averrhoa carambola
Defeacting: Piper betle
Injury: Curcuma longa

Lump on armpit: Peperomia pellucida
Dengue fever: Carica papaya, Duriozethis
Dysmenorrhea: Tinosphora rumphii Boerl
Irregular: Tinosphora rumphii Boerl
Mensuration: Carica papaya
Tonsilitis: Commelina benghalensis L.
Diabetes: Averrhoa carambola

Leg pain: Acorus gramineus
Back pain: Premna odorata Blanco
Bed sore: Stachytarpheta jamaicensis L.
Mumps: Kaempferia galanga Linn.
Ear infection: Kaempferia galang Linn.
Sore throat: Zingiber officinale
Hoarseness: Zingiber officinale
Burn: Aloe barbadensis Mill.
Scalp diseases: Aloe barbadensis Mill.
Tumor: Panax ginseng
Rheumatism: Blumea balsamifera
Malaria: Blumea balsamifera
Chest strain: Impatiens balsamina Linn.
Amoebiasis: Impatiens balsamina Linn.
White fungal infection: Cassia alata L.

Diuretica: Zea mays
Convulsion: Callicarpa formosana Rolfe
White occurrence in the eye: Callicarpa formosana Rolfe
Abscess: Callicarpa formosana Rolfe
Difficulty of delivery: Hibiscus rosasinensis

Figure 1 shows the percentage of diseases that can be treated by the medicinal plants reported. The medicinal plants mostly treated diseases such as gastrointestinal diseases (19%), respiratory diseases (16%), musculo-skeletal diseases (12%), wounds/bruises/boils (9%), fever (6%), hypertension (6%), skin diseases (4%), viral diseases (3%), blood-related diseases (3%), urinary tract infection (4%), and other diseases (18%) which include toothache, teething for babies, goiter, hair fall, cancer, burn, cyst, migraine, snake bite, diabetes, pain reliever, malaria, tumor, de-worming, dengue fever, skin softener, measles, and preventing pregnancy.

This can be tracked in Table 2

Figure 2. Parts of Medicinal Plants Utilized by Local People of Agusan del Sur, Philippines

A total of 126 species of medicinal plant parts are utilized by the local people of Agusan del Sur, Southern Philippines. Leaves were largely used (49%), followed by stems (14%), whole plants (11%), roots (9%), fruits
(9%), bark (4%), flowers (2%), and seeds (2%). This is shown in Figure 2.

Preparation, Application and Administration Route of Medicinal Plants

Fresh plant parts were mostly used as medicine. Decoction was the most common way of preparing medicinal plants. The plant parts were boiled in water and the extract (crude drug) was used which constitute 39%, extraction was 32% where leaves are crushed and the extract was utilized directly after simple filtration. Infusion is 10% where leaves was dipped in tap or hot water and taken after few minutes. Concoction was 7%, poultice 6%, where leaves, stem or bark was softened and applied to the material directly to the affected part. Other ways of utilization consisted of direct eating 5%, concoction, and tincture with wine ranged 1%, were chopped roots or stems dipped in a wine for many weeks and the liquid was utilized. This is shown in Figure 3.

Externally administered was 20% such that of Ipomea spp, where fresh leaves are crushed to stop bleeding wounds and that of Opuntia ficus indica (Prickly pear cactus) applied by pounding gently as poultice to cyst and goiter.

2.1 Wild Edible Plants used by Local People

The informants reported 53 wild edible plants species used as part of their diet. These plants were utilized as vegetables and fruits eaten directly.

Table 3
The number of Taxa Recorded (WEP)

<table>
<thead>
<tr>
<th>Number of</th>
<th>Species</th>
<th>Genera</th>
<th>Families</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Among the 53 Wild Edible plants documented, forty-five were sold in the market and eight species yet unsold as a source of income; Spondias pinnata (Libas), Caryota mitis Lour. (Pugahan), Dillenia indica Blanco (Katmon), Securinega flexousa (Anislag), Phyllanthus acidus (Kabihid), Artocarpus treculianus (Tugop), Pandanus odorus (Pandan), Ziziphus jujuba (Mansanitas).

Figure 4 revealed that medicinal plants used by local people of Prosperidad, Agusan del Sur, Philippines were mostly taken orally through decoction and infusion (48%), others were administered both externally and orally (32%), leaves and stems of a single plant were both utilized and applied externally like that of Jatropha curcas, stems used to remedy muscular fatigue and leaves for poultice on sprain.
The part of wild edible plants directly utilized were fruits (53%), stem (24%), leaves (19%), blossom (2%), and root (2%). Ripe or unripe fruits were eaten directly after gathering from forests. The blossom of *Musa sapientum* (banana) was made into meatless burger. Leaves were used as vegetables sometimes added to fish. *Pandanus odoratus* (pandan) was added to rice for aroma. (Shown in Fig. 5).

One root crop *Manihot esculenta* (cassava) was mostly cooked singly and sometimes as emergency food in the absence of rice not only during famine.

The majority of these wild edible plants can be domesticated but, because of the availability of some in the wild, no one had attempted to plant near their homes. An example of this wild edible plant is *Athyrium esculentum* (fern) which grows in farms, roadsides, near river ecosystem, and uncultivated lands. This is even a best source of income.

Conclusion and Recommendation

There are one hundred twenty six (126) medicinal plants documented that can largely treat gastro-intestinal, respiratory, musculo-skeletal, wounds/bruises/boils, fever, hypertension and other human diseases/ailments. Leaves are prepared for decoction, infusion and extraction, and mostly administered orally.

Local users strongly believe that herbal plants are so effective that in two to three days ailments are cured. There is no uniformity in their preparation and dosage. They even claim that there are no over dosage in using these medicinal, plants as experienced. Their uses are most beneficial since hospitals and modern facilities are non-accessible. Both medicinal and wild edible plants, however, are getting scarce due to over collection, harvesting style and lack of care.

Fifty three species of wild edible plants were utilized as fruits cooked as vegetables, food additive, flavouring and candy. Tubers and corm are boiled and consumed as meal. Seventy-nine and twenty-five percent (79.25%) can be source of food and income while twenty and seventy-five percent (20.75%) can be source of food, but not sold in the market.

The data obtained will help the local management to make policy for conservation, reproduction, advocacy on their uses for sustainability.

For future researches, phytochemical screening and other laboratory tests will be conducted to selected medicinal and wild edible plants; develop strategic plan for conservation, scientific utilization and preparation of medicinal and wild edible plants for local use and as sources of income. Finally, strengthen dissemination and information campaign on their uses.
References

Nedelcheva, A. (2012). An ethnobotanical study of wild edible plants in

